#berried female predict to canMPI dailies
require(sdmTMB)
require(bio.lobster)
require(bio.utilities)
require(lubridate)
require(devtools)
require(dplyr)
require(ggplot2)
require(INLA)
options(stringAsFactors=F)
require(PBSmapping)
require(SpatialHub)
require(sf)
la()
fd=file.path(project.datadirectory('bio.lobster'),'analysis','ClimateModelling')
dir.create(fd,showWarnings=F)
setwd(fd)
x=readRDS(file='sdmTMBBerriedpabyQFinal.rds')
fitpa = x$model
bspde = x$grid
survey= x$data
Glsur = readRDS('GlorysPredictSurface.rds')
x = Glsur
x = bio.utilities::rename.df(x,c('bottomT','yr'),c('BT','YEAR'))
x = subset(x,z>0)
x$lZ = log(x$z)
x$X1000 = st_coordinates(x)[,1]
x$Y1000 = st_coordinates(x)[,2]
x = subset(x,exp(lZ)<400)
x = as_tibble(subset(x,select=c(Q,YEAR,BT,X1000,Y1000,lZ)))
x$geometry=NULL
g = predict(fitpa,newdata=subset(x,YEAR>1999))
g$pred = fitpa$family$linkinv(g$est)
gsf = st_as_sf(g,coords = c("X1000","Y1000"),crs=32620,remove=F)
rL = readRDS(file.path( project.datadirectory("bio.lobster"), "data","maps","LFAPolysSF.rds"))
rL = st_as_sf(rL)
st_crs(rL) <- 4326
rL = st_transform(rL,32620)
st_geometry(rL) <- st_geometry(st_as_sf(rL$geometry/1000))
st_crs(rL) <- 32620
ff = st_join(gsf,rL,join=st_within)
gsf = subset(ff,!is.na(LFA))
saveRDS(gsf,'BerriedPredictionSurface.rds')
gsf = readRDS('BerriedPredictionSurface.rds')
had = readRDS(file='HadDailyTemps.rds')
had = st_transform(had,32620)
st_geometry(had) <- st_geometry(st_as_sf(had$geometry/1000))
st_crs(had) <- 32620
had$m = month(had$Date)
had$Q = ifelse(had$m %in% c(10,11,12),1,ifelse(had$m %in% c(1,2,3),2,ifelse(had$m %in% c(4,5,6),3,4)))
ffh = st_join(had,rL,join=st_within)
had = subset(ffh,!is.na(LFA))
gp = subset(gsf,YEAR %in% 2016:2021 & Q==3)
hp = subset(had,Q==3 & Depth_m<500)
hp$doy = yday(hp$Date)
hp$id = 1:nrow(hp)
y = 2016:2021
for( i in 1:length(y)){
g = subset(gp,YEAR==y[i])
gpp = g
st_geometry(gpp) <- NULL
doyy = unique(hp$doy)
hp$new=NA
names(hp)[ncol(hp)]=paste('Pred',unique(g$YEAR),sep=".")
junk = list()
for(j in 1:length(doyy)){
hpp = subset(hp,doy==doyy[j])
dist = st_nearest_feature(hpp,g)
hpp[,ncol(hpp)] = gpp[dist,'pred']
junk[[j]] = hpp
}
hp = dplyr::bind_rows(junk)
}
v = st_equals(hp)
#making a unique id per location
hp$id = NA
for(i in 1:length(v)){
print(i)
hp[v[[i]],'id'] = i
}
hpu = subset(hp,select=c(id,geometry)) %>% distinct()
hpu = st_join(hpu,rL,join=st_within)
hpu = subset(hpu,!is.na(LFA))
hp = subset(hp , id %in% hpu$id)
LL = aggregate(LFA~id,data=hp,FUN=function(x)median(x,na.rm=T))
names(LL)[1] = 'Location'
#temperature range
xx = aggregate(X.2016~Pred.2016+id,data=hp,FUN=function(x){z = quantile(x,c(0.025,0.975)); z[2] -z[1]})
xx$yr=2016
names(xx)[1:3] = c('BerriedProb','Location','Temperature_Range')
xx2 = aggregate(X.2017~Pred.2017+id,data=hp,FUN=function(x){z = quantile(x,c(0.025,0.975)); z[2] -z[1]})
xx2$yr = 2017
names(xx2)[1:3] = c('BerriedProb','Location','Temperature_Range')
xx3 = aggregate(X.2018~Pred.2018+id,data=hp,FUN=function(x){z = quantile(x,c(0.025,0.975)); z[2] -z[1]})
xx3$yr = 2018
names(xx3)[1:3] = c('BerriedProb','Location','Temperature_Range')
xx4 = aggregate(X.2019~Pred.2019+id,data=hp,FUN=function(x){z = quantile(x,c(0.025,0.975)); z[2] -z[1]})
xx4$yr = 2019
names(xx4)[1:3] = c('BerriedProb','Location','Temperature_Range')
xx5 = aggregate(X.2020~Pred.2020+id,data=hp,FUN=function(x){z = quantile(x,c(0.025,0.975)); z[2] -z[1]})
xx5$yr = 2020
names(xx5)[1:3] = c('BerriedProb','Location','Temperature_Range')
xx6 = aggregate(X.2021~Pred.2021+id,data=hp,FUN=function(x){z = quantile(x,c(0.025,0.975)); z[2] -z[1]})
xx6$yr = 2021
names(xx6)[1:3] = c('BerriedProb','Location','Temperature_Range')
xx7 = dplyr::bind_rows(list(xx,xx2,xx3,xx4,xx5,xx6))
names(xx7)[3] = 'Temp_range'
xx7 = merge(xx7,LL)
ggplot(subset(xx7,Temp_range>0.5),aes(x=Temp_range))+
geom_histogram(data=subset(xx7,Temp_range>0.5),fill = "blue", alpha = 0.2,position='identity',aes(y= ..density..))+
geom_histogram(data=subset(xx7,Temp_range>.5 & BerriedProb>0.90),fill = "red", alpha = 0.2,position='identity',aes(y= ..density..)) +
facet_wrap(~LFA)
savePlot('TemperatureRangeBerriedLocation.png')
#median temp
xx = aggregate(X.2016~Pred.2016+id,data=hp,FUN=median)
xx$yr=2016
names(xx)[1:3] = c('BerriedProb','Location','Temperature Median')
xx2 = aggregate(X.2017~Pred.2017+id,data=hp,FUN=median)
xx2$yr = 2017
names(xx2)[1:3] = c('BerriedProb','Location','Temperature Median')
xx3 = aggregate(X.2018~Pred.2018+id,data=hp,FUN=median)
xx3$yr = 2018
names(xx3)[1:3] = c('BerriedProb','Location','Temperature Median')
xx4 = aggregate(X.2019~Pred.2019+id,data=hp,FUN=median)
xx4$yr = 2019
names(xx4)[1:3] = c('BerriedProb','Location','Temperature Median')
xx5 = aggregate(X.2020~Pred.2020+id,data=hp,FUN=median)
xx5$yr = 2020
names(xx5)[1:3] = c('BerriedProb','Location','Temperature Median')
xx6 = aggregate(X.2021~Pred.2021+id,data=hp,FUN=median)
xx6$yr = 2021
names(xx6)[1:3] = c('BerriedProb','Location','Temperature Median')
xx8 = dplyr::bind_rows(list(xx,xx2,xx3,xx4,xx5,xx6))
xx8 = merge(xx8,LL)
names(xx8)[3] = 'Temp_median'
ggplot(subset(xx8),aes(x=Temp_median))+
geom_histogram(data=subset(xx8,Temp_median>0.5),fill = "blue", alpha = 0.2,position='identity',aes(y= ..density..))+
geom_histogram(data=subset(xx8,Temp_median>0.5 & BerriedProb>0.75),fill = "red", alpha = 0.2,position='identity',aes(y= ..density..)) +
facet_wrap(~LFA)
savePlot('TemperatureMedianBerriedLocation_NOYEAR.png')
xx9=merge(xx7,xx8)
xx10 = merge(xx9,hpu,by.x='Location',by.y='id')
xx11 = st_as_sf(xx10)
ggplot(xx11) +
geom_sf(aes(fill=Temp_range,color=Temp_range)) +
scale_fill_viridis_c() +
scale_color_viridis_c() +
facet_wrap(~yr) +
# geom_sf(data=rL,size=1,colour='black',fill=NA)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
savePlot('TemperatureRangeLocation.png')
ggplot(xx11) +
geom_sf(aes(fill=Temp_median,color=Temp_median)) +
scale_fill_viridis_c() +
scale_color_viridis_c() +
facet_wrap(~yr) +
# geom_sf(data=rL,size=1,colour='black',fill=NA)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
savePlot('TemperatureMedianLocation.png')
st_geometry(xx11) <- NULL
xx11$Temp_range = round(xx11$Temp_range,2)
xx11$Temp_median = round(xx11$Temp_median,2)
ofi = readRDS(file.path(project.datadirectory('bio.lobster'),'data','OFI_lobster_covariates','ofi_pointData500m.rds'))
ofi$X1000 = st_coordinates(ofi)[,1]/1000
ofi$Y1000 = st_coordinates(ofi)[,2]/1000
st_geometry(ofi) <-NULL
ofi = st_as_sf(ofi,coords=c('X1000','Y1000'),crs=32620)
hp_ofi = st_join(hp,ofi,join=st_nearest_feature,left=T)
hp_ofi$depth = hp_ofi$depth*-1
#depth
xx = aggregate(Depth_m~Pred.2016+id,data=hp_ofi,FUN=median)
xx$yr=2016
names(xx)[1:3] = c('BerriedProb','Location','Depth')
xx2 = aggregate(Depth_m~Pred.2017+id,data=hp,FUN=median)
xx2$yr = 2017
names(xx2)[1:3] = c('BerriedProb','Location','Depth')
xx3 = aggregate(Depth_m~Pred.2018+id,data=hp,FUN=median)
xx3$yr = 2018
names(xx3)[1:3] = c('BerriedProb','Location','Depth')
xx4 = aggregate(Depth_m~Pred.2019+id,data=hp,FUN=median)
xx4$yr = 2019
names(xx4)[1:3] = c('BerriedProb','Location','Depth')
xx5 = aggregate(Depth_m~Pred.2020+id,data=hp,FUN=median)
xx5$yr = 2020
names(xx5)[1:3] = c('BerriedProb','Location','Depth')
xx6 = aggregate(Depth_m~Pred.2021+id,data=hp,FUN=median)
xx6$yr = 2021
names(xx6)[1:3] = c('BerriedProb','Location','Depth')
xx8 = dplyr::bind_rows(list(xx,xx2,xx3,xx4,xx5,xx6))
names(xx8)[3] = 'Depth'
xx8 = merge(xx8,LL)
ggplot(subset(xx8,Depth<500),aes(x=Depth))+
geom_histogram(data=subset(xx8,Depth<500),fill = "blue", alpha = 0.2,position='identity',aes(y= ..density..))+
geom_histogram(data=subset(xx8,Depth < 500 & BerriedProb>0.90),fill = "red", alpha = 0.2,position='identity',aes(y= ..density..)) +
facet_wrap(~LFA)
savePlot('DepthBerriedLocation.png')
##apply these conditions to predictions from model to make sure we are still finding the right places
hpu = subset(hp,select=c(id,geometry)) %>% distinct()
hp$PredCond = ifelse(hp$Pred.2016>.75,1,0)
ggplot(hp) +
geom_sf(aes(fill=Pred.2016,color=Pred.2016)) +
scale_fill_viridis_c() +
scale_color_viridis_c() +
# geom_sf(data=rL,size=1,colour='black',fill=NA)+
#stat_contour(data=hp[cond,],aes(color=after_stat(level)),bin=0.75)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
hp$PredCond = ifelse(hp$Pred.2017>.05,1,0)
ggplot(hp) +
geom_sf(aes(fill=PredCond,color=PredCond)) +
geom_sf(data=rL,size=1,colour='black',fill=NA)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
#convert to a raster then draw polys around locations of high prob berried
require(stars)
hps = st_rasterize(hp %>% dplyr::select(PredCond,geometry))
hpST = st_as_stars(hp)
vv = st_contour(hps,contour_lines=F,breaks=.99)
vvh = st_as_sf(vv)
hpp = hp
st_geometry(hpp) <-NULL
hp$medPre = apply(hpp[,c('Pred.2016','Pred.2017','Pred.2018','Pred.2019','Pred.2020','Pred.2021')],1,mean)
hpup = subset(hp,select=c(id,LFA,geometry,Pred.2016,Pred.2017,Pred.2018,Pred.2019,Pred.2020,Pred.2021)) %>% distinct()
st_geometry(hpup) <-NULL
hpup$medPred = apply(hpup[,c('Pred.2016','Pred.2017','Pred.2018','Pred.2019','Pred.2020','Pred.2021')],1,mean)
#temperature
xx = aggregate(cbind(X.2016,X.2035,X.2055,X.2099)~id+LFA,data=hp,FUN=function(x){z = quantile(x,c(0.025,0.975)); z[2] -z[1]})
names(xx)[3:6] = c('Temp2016_range','Temp2035_range','Temp2055_range','Temp2099_range')
xxm = aggregate(cbind(X.2016,X.2035,X.2055,X.2099)~id+LFA,data=hp,FUN=function(x){mean(x)})
names(xxm)[3:6] = c('Temp2016_med','Temp2035_med','Temp2055_med','Temp2099_med')
xxd = aggregate(Depth_m~id,data=hp,FUN=function(x){mean(x)})
xxs = st_as_sf(merge(merge(merge(xxm,xxd),xx),hpu))
xxs = merge(xxs,hpup[,c('id','Pred.2016')])
xx12 = xx11
st_geometry(xx12) = NULL
xx12$LFA.x=NULL
xx12$LFA = xx12$LFA.y
xx13 = merge(xx8[,c('Location','Depth')],xx12)
require(mgcv)
gg = gam(BerriedProb~s(Depth)+s(Temp_range)+s(Temp_median)+ti(Temp_range,Temp_median,by=Depth)+as.factor(LFA),data=xx13,family=betar(link='logit'))
#Depth Range
DR = aggregate(Depth~LFA, data=subset(xx8,BerriedProb>0.75 & Depth <500),FUN=function(x) quantile(x,probs=c(0.25,0.75)))
#Temp Range
TRR = aggregate(Temp_range~LFA, data=subset(xx13,BerriedProb>0.75 & Depth <500),FUN=function(x) quantile(x,probs=c(0.25,0.75)))
#Temp Med
TM = aggregate(Temp_median~LFA, data=subset(xx13,BerriedProb>0.75 & Depth <500),FUN=function(x) quantile(x,probs=c(0.25,0.75)))
saveRDS(list(DR,TRR,TM),file='HADberriedFemaleEnvCondition.rds')
testR = function(x,depth=DR,tempr=TRR,tempm=TM,vars=c('t','tr','d')){
junk=list()
xl = unique(x$LFA)
for(i in 1:length(xl)){
xii = xi = subset(x,LFA==xl[i])
st_geometry(xi)<-NULL
d = xi[,1]
tr = xi[,2]
tm = xi[,3]
di = subset(depth,LFA==xl[i])$Depth
tri = subset(tempr,LFA==xl[i])$Temp_range
tmi = subset(tempm,LFA==xl[i])$Temp_median
v = which(dplyr::between(d, di[1],di[2]))
j = which(dplyr::between(tr, tri[1],tri[2]))
k = which(dplyr::between(tm, tmi[1],tmi[2]))
if(length(vars)==3) l = intersect(intersect(v,j),k)
if(all(length(vars)==2 & vars[1] %in%c('t','tr') & vars[2] %in%c('t','tr'))) l = intersect(j,k)
if(all(length(vars)==2 & vars[1] %in%c('t','d') & vars[2] %in%c('t','d'))) l = intersect(j,v)
xii$TF = 0
xii$TF[l] = 1
junk[[i]] = xii
}
x = dplyr::bind_rows(junk)
return(x)
}
fbase = testR(xxs[,c('Depth_m','Temp2016_range','Temp2016_med','id','Pred.2016','LFA')],vars=c('t','d'))
f35 = testR(xxs[,c('Depth_m','Temp2035_range','Temp2035_med','id','Pred.2016','LFA')])
f55 = testR(xxs[,c('Depth_m','Temp2055_range','Temp2055_med','id','Pred.2016',"LFA")])
f99 = testR(xxs[,c('Depth_m','Temp2099_range','Temp2099_med','id','Pred.2016',"LFA")])
plbase = ggplot(fbase) +
geom_sf(aes(fill=TF,color=TF)) +
scale_fill_viridis_c() +
scale_color_viridis_c() +
# geom_sf(data=rL,size=1,colour='black',fill=NA)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
pl35 = ggplot(f35) +
geom_sf(aes(fill=TF,color=TF)) +
scale_fill_viridis_c() +
scale_color_viridis_c() +
# geom_sf(data=rL,size=1,colour='black',fill=NA)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
pl55 = ggplot(f55) +
geom_sf(aes(fill=TF,color=TF)) +
scale_fill_viridis_c() +
scale_color_viridis_c() +
# geom_sf(data=rL,size=1,colour='black',fill=NA)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
pl99 = ggplot(f99) +
geom_sf(aes(fill=TF,color=TF)) +
scale_fill_viridis_c() +
scale_color_viridis_c() +
# geom_sf(data=rL,size=1,colour='black',fill=NA)+
theme( axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank()
) +
coord_sf()
cowplot::plot_grid(plbase,pl35,pl55,pl99,ncol=2,labels=c(2016,2035,2055,2099))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.